Spectral radius and Average 2-Degree sequence of a Graph

نویسندگان

  • Yu-pei Huang
  • Chih-wen Weng
چکیده

Let G be a simple connected graph of order n with average 2degree sequence M1 ≥ M2 ≥ · · · ≥ Mn. Let ρ(G) denote the spectral radius of the adjacency matrix of G. We show that for each 1 ≤ l ≤ n and for any b ≥ max {di/dj | i ∼ j}, ρ(G) ≤ Ml − b+ √ (Ml + b)2 + 4b ∑l−1 i=1(Mi −Ml) 2 with equality if and only if M1 = M2 = · · · = Mn.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SIGNLESS LAPLACIAN SPECTRAL MOMENTS OF GRAPHS AND ORDERING SOME GRAPHS WITH RESPECT TO THEM

Let $G = (V, E)$ be a simple graph. Denote by $D(G)$ the diagonal matrix $diag(d_1,cdots,d_n)$, where $d_i$ is the degree of vertex $i$  and  $A(G)$ the adjacency matrix of $G$. The  signless Laplacianmatrix of $G$ is $Q(G) = D(G) + A(G)$ and the $k-$th signless Laplacian spectral moment of  graph $G$ is defined as $T_k(G)=sum_{i=1}^{n}q_i^{k}$, $kgeqslant 0$, where $q_1$,$q_2$, $cdots$, $q_n$ ...

متن کامل

A Sharp Lower Bound of the Spectral Radius of Simple Graphs

Let G be a simple connected graph with vertex set V = {1, 2, . . . , n}. Let d(i, j) denote the distance between vertices i and j. For i ∈ V , the degree of i and the average of the degree of the vertices adjacent to i are denoted by di and mi, respectively. The 2-degree of vertex i is denoted by ti, which is the sum of degrees of the vertices adjacent to i, that is ti = midi. Let Ni be the sum...

متن کامل

Bounds for the Co-PI index of a graph

In this paper, we present some inequalities for the Co-PI index involving the some topological indices, the number of vertices and edges, and the maximum degree. After that, we give a result for trees. In addition, we give some inequalities for the largest eigenvalue of the Co-PI matrix of G.

متن کامل

Diameter Two Graphs of Minimum Order with Given Degree Set

The degree set of a graph is the set of its degrees. Kapoor et al. [Degree sets for graphs, Fund. Math. 95 (1977) 189-194] proved that for every set of positive integers, there exists a graph of diameter at most two and radius one with that degree set. Furthermore, the minimum order of such a graph is determined. A graph is 2-self- centered if its radius and diameter are two. In this paper for ...

متن کامل

Some Sharp Upper Bounds on the Spectral Radius of Graphs

In this paper, we first give a relation between the adjacency spectral radius and the Q-spectral radius of a graph. Then using this result, we further give some new sharp upper bounds on the adjacency spectral radius of a graph in terms of degrees and the average 2-degrees of vertices. Some known results are also obtained.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete Math., Alg. and Appl.

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2014